August 16, 2019

Scientists report two advances in understanding the role of ‘charge stripes’ in superconducting materials

The studies could lead to a new understanding of how high-temperature superconductors operate.

By Ali Sundermier and Glennda Chui

High-temperature superconductors, which carry electricity with zero resistance at much higher temperatures than conventional superconducting materials, have generated a lot of excitement since their discovery more than 30 years ago because of their potential for revolutionizing technologies such as maglev trains and long-distance power lines. But scientists still don’t understand how they work.

One piece of the puzzle is the fact that charge density waves – static stripes of higher and lower electron density running through a material – have been found in one of the major families of high-temperature superconductors, the copper-based cuprates. But do these charge stripes enhance superconductivity, suppress it or play some other role?

In independent studies, two research teams report important advances in understanding how charge stripes might interact with superconductivity. Both studies were carried out with X-rays at the Department of Energy’s SLAC National Accelerator Laboratory.

Exquisite detail

In a paper published today in Science Advances, researchers from the University of Illinois at Urbana-Champaign (UIUC) used SLAC’s Linac Coherent Light Source (LCLS) X-ray free-electron laser to observe fluctuations in charge density waves in a cuprate superconductor.

fluctuating charge stripes
This cutaway view shows stripes of higher and lower electron density – “charge stripes” – within a copper-based superconducting material. Experiments with SLAC’s X-ray laser directly observed how those stripes fluctuate when hit with a pulse of light, a step toward understanding how they interact with high-temperature superconductivity. (Greg Stewart/SLAC National Accelerator Laboratory)

They disturbed the charge density waves with pulses from a conventional laser and then used RIXS, or resonant inelastic X-ray scattering, to watch the waves recover over a period of a few trillionths of a second. This recovery process behaved according to a universal dynamical scaling law: It was the same at all scales, much as a fractal pattern looks the same whether you zoom in or zoom out.

With LCLS, the scientists were able to measure, for the first time and in exquisite detail, exactly how far and how fast the charge density waves fluctuated. To their surprise, the team discovered that the fluctuations were not like the ringing of a bell or the bouncing of a trampoline; instead, they were more like the slow diffusion of a syrup – a quantum analog of liquid crystal behavior, which had never been seen before in a solid.

“Our experiments at LCLS establish a new way to study fluctuations in charge density waves, which could lead to a new understanding of how high-temperature superconductors operate,” says Matteo Mitrano, a postdoctoral researcher in professor Peter Abbamonte’s group at UIUC.

This team also included researchers from Stanford University, the National Institute of Standards and Technology and Brookhaven National Laboratory.

Hidden arrangements

Another study, reported last month in Nature Communications, used X-rays from SLAC’S Stanford Synchrotron Radiation Lightsource (SSRL) to discover two types of charge density wave arrangements, making a new link between these waves and high-temperature superconductivity.

Led by SLAC scientist Jun-Sik Lee, the research team used RSXS, or resonant soft X-ray scattering, to watch how temperature affected the charge density waves in a cuprate superconductor.

“This resolves a mismatch in data from previous experiments and charts a new course for fully mapping the behaviors of electrons in these exotic superconducting materials,” Lee says.

“I believe that exploring new or hidden arrangements, as well as their intertwining phenomena, will contribute to our understanding of high-temperature superconductivity in cuprates, which will inform researchers in their quest to design and develop new superconductors that work at warmer temperatures.”

The team also included researchers from Stanford, Pohang Accelerator Laboratory in South Korea and Tohoku University in Japan. 

SSRL and LCLS are DOE Office of Science user facilities. Both studies were supported by the Office of Science.


Citation: J.-J. Wen et al., Nature Communications, 22 July 2019 (10.1038/s41467-019-11167-z)

M. Mitrano et al., Science Advances, 16 August 2019 (10.1126/sciadv.aax3346)


Contact

For questions or comments, contact the SLAC Office of Communications at communications@slac.stanford.edu.


SLAC is a vibrant multiprogram laboratory that explores how the universe works at the biggest, smallest and fastest scales and invents powerful tools used by scientists around the globe. With research spanning particle physics, astrophysics and cosmology, materials, chemistry, bio and energy sciences and scientific computing, we help solve real-world problems and advance the interests of the nation.

SLAC is operated by Stanford University for the U.S. Department of Energy’s Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Dig Deeper

Related stories

News Brief

A SLAC study shows a process called atomic relaxation offers a new way to explore quantum states in these puzzling materials.

Light blue wavy lines on a maroon red background.
News Feature

AI is playing a key role in helping SLAC researchers find new galaxies and tiny neutrinos, and discover new drugs.

Diffraction pattern
News Feature

Descamps was recognized for turning the world’s most powerful X-ray laser into a sophisticated tool for probing extremely hot, dense matter.

Adrien Descamps presents his research.
News Brief

A SLAC study shows a process called atomic relaxation offers a new way to explore quantum states in these puzzling materials.

Light blue wavy lines on a maroon red background.
News Feature

AI is playing a key role in helping SLAC researchers find new galaxies and tiny neutrinos, and discover new drugs.

Diffraction pattern
News Feature

Descamps was recognized for turning the world’s most powerful X-ray laser into a sophisticated tool for probing extremely hot, dense matter.

Adrien Descamps presents his research.
News Feature

Tanner works on self-assembling nanocrystals, which could be the basis for less expensive, easier to build displays and solar cells.

Christian Tanner
Press Release

Charging lithium-ion batteries at high currents just before they leave the factory is 30 times faster and increases battery lifespans by 50%, according to...

An illustration shows batteries flow down an assembly line, turning them from gray to green.
News Brief

An X-ray imaging technique revealed that copper nanofoams used in inertial fusion experiments aren't as uniform as expected.

Green blobs on a blue background.